3.389 \(\int \frac{x^2 \tanh ^{-1}(a x)}{(1-a^2 x^2)^{3/2}} \, dx\)

Optimal. Leaf size=137 \[ \frac{i \text{PolyLog}\left (2,-\frac{i \sqrt{1-a x}}{\sqrt{a x+1}}\right )}{a^3}-\frac{i \text{PolyLog}\left (2,\frac{i \sqrt{1-a x}}{\sqrt{a x+1}}\right )}{a^3}-\frac{1}{a^3 \sqrt{1-a^2 x^2}}+\frac{x \tanh ^{-1}(a x)}{a^2 \sqrt{1-a^2 x^2}}+\frac{2 \tan ^{-1}\left (\frac{\sqrt{1-a x}}{\sqrt{a x+1}}\right ) \tanh ^{-1}(a x)}{a^3} \]

[Out]

-(1/(a^3*Sqrt[1 - a^2*x^2])) + (x*ArcTanh[a*x])/(a^2*Sqrt[1 - a^2*x^2]) + (2*ArcTan[Sqrt[1 - a*x]/Sqrt[1 + a*x
]]*ArcTanh[a*x])/a^3 + (I*PolyLog[2, ((-I)*Sqrt[1 - a*x])/Sqrt[1 + a*x]])/a^3 - (I*PolyLog[2, (I*Sqrt[1 - a*x]
)/Sqrt[1 + a*x]])/a^3

________________________________________________________________________________________

Rubi [A]  time = 0.105353, antiderivative size = 137, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.091, Rules used = {5998, 5950} \[ \frac{i \text{PolyLog}\left (2,-\frac{i \sqrt{1-a x}}{\sqrt{a x+1}}\right )}{a^3}-\frac{i \text{PolyLog}\left (2,\frac{i \sqrt{1-a x}}{\sqrt{a x+1}}\right )}{a^3}-\frac{1}{a^3 \sqrt{1-a^2 x^2}}+\frac{x \tanh ^{-1}(a x)}{a^2 \sqrt{1-a^2 x^2}}+\frac{2 \tan ^{-1}\left (\frac{\sqrt{1-a x}}{\sqrt{a x+1}}\right ) \tanh ^{-1}(a x)}{a^3} \]

Antiderivative was successfully verified.

[In]

Int[(x^2*ArcTanh[a*x])/(1 - a^2*x^2)^(3/2),x]

[Out]

-(1/(a^3*Sqrt[1 - a^2*x^2])) + (x*ArcTanh[a*x])/(a^2*Sqrt[1 - a^2*x^2]) + (2*ArcTan[Sqrt[1 - a*x]/Sqrt[1 + a*x
]]*ArcTanh[a*x])/a^3 + (I*PolyLog[2, ((-I)*Sqrt[1 - a*x])/Sqrt[1 + a*x]])/a^3 - (I*PolyLog[2, (I*Sqrt[1 - a*x]
)/Sqrt[1 + a*x]])/a^3

Rule 5998

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))*(x_)^2*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> -Simp[(b*(d + e*x^2)^(
q + 1))/(4*c^3*d*(q + 1)^2), x] + (Dist[1/(2*c^2*d*(q + 1)), Int[(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x]), x],
 x] - Simp[(x*(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x]))/(2*c^2*d*(q + 1)), x]) /; FreeQ[{a, b, c, d, e}, x] &&
 EqQ[c^2*d + e, 0] && LtQ[q, -1] && NeQ[q, -5/2]

Rule 5950

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(-2*(a + b*ArcTanh[c*x])*
ArcTan[Sqrt[1 - c*x]/Sqrt[1 + c*x]])/(c*Sqrt[d]), x] + (-Simp[(I*b*PolyLog[2, -((I*Sqrt[1 - c*x])/Sqrt[1 + c*x
])])/(c*Sqrt[d]), x] + Simp[(I*b*PolyLog[2, (I*Sqrt[1 - c*x])/Sqrt[1 + c*x]])/(c*Sqrt[d]), x]) /; FreeQ[{a, b,
 c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[d, 0]

Rubi steps

\begin{align*} \int \frac{x^2 \tanh ^{-1}(a x)}{\left (1-a^2 x^2\right )^{3/2}} \, dx &=-\frac{1}{a^3 \sqrt{1-a^2 x^2}}+\frac{x \tanh ^{-1}(a x)}{a^2 \sqrt{1-a^2 x^2}}-\frac{\int \frac{\tanh ^{-1}(a x)}{\sqrt{1-a^2 x^2}} \, dx}{a^2}\\ &=-\frac{1}{a^3 \sqrt{1-a^2 x^2}}+\frac{x \tanh ^{-1}(a x)}{a^2 \sqrt{1-a^2 x^2}}+\frac{2 \tan ^{-1}\left (\frac{\sqrt{1-a x}}{\sqrt{1+a x}}\right ) \tanh ^{-1}(a x)}{a^3}+\frac{i \text{Li}_2\left (-\frac{i \sqrt{1-a x}}{\sqrt{1+a x}}\right )}{a^3}-\frac{i \text{Li}_2\left (\frac{i \sqrt{1-a x}}{\sqrt{1+a x}}\right )}{a^3}\\ \end{align*}

Mathematica [A]  time = 0.22646, size = 121, normalized size = 0.88 \[ \frac{i \left (\text{PolyLog}\left (2,-i e^{-\tanh ^{-1}(a x)}\right )-\text{PolyLog}\left (2,i e^{-\tanh ^{-1}(a x)}\right )+\frac{i}{\sqrt{1-a^2 x^2}}-\frac{i a x \tanh ^{-1}(a x)}{\sqrt{1-a^2 x^2}}+\tanh ^{-1}(a x) \log \left (1-i e^{-\tanh ^{-1}(a x)}\right )-\tanh ^{-1}(a x) \log \left (1+i e^{-\tanh ^{-1}(a x)}\right )\right )}{a^3} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(x^2*ArcTanh[a*x])/(1 - a^2*x^2)^(3/2),x]

[Out]

(I*(I/Sqrt[1 - a^2*x^2] - (I*a*x*ArcTanh[a*x])/Sqrt[1 - a^2*x^2] + ArcTanh[a*x]*Log[1 - I/E^ArcTanh[a*x]] - Ar
cTanh[a*x]*Log[1 + I/E^ArcTanh[a*x]] + PolyLog[2, (-I)/E^ArcTanh[a*x]] - PolyLog[2, I/E^ArcTanh[a*x]]))/a^3

________________________________________________________________________________________

Maple [A]  time = 0.346, size = 190, normalized size = 1.4 \begin{align*} -{\frac{{\it Artanh} \left ( ax \right ) -1}{2\,{a}^{3} \left ( ax-1 \right ) }\sqrt{- \left ( ax-1 \right ) \left ( ax+1 \right ) }}-{\frac{{\it Artanh} \left ( ax \right ) +1}{2\,{a}^{3} \left ( ax+1 \right ) }\sqrt{- \left ( ax-1 \right ) \left ( ax+1 \right ) }}+{\frac{i{\it Artanh} \left ( ax \right ) }{{a}^{3}}\ln \left ( 1+{i \left ( ax+1 \right ){\frac{1}{\sqrt{-{a}^{2}{x}^{2}+1}}}} \right ) }-{\frac{i{\it Artanh} \left ( ax \right ) }{{a}^{3}}\ln \left ( 1-{i \left ( ax+1 \right ){\frac{1}{\sqrt{-{a}^{2}{x}^{2}+1}}}} \right ) }+{\frac{i}{{a}^{3}}{\it dilog} \left ( 1+{i \left ( ax+1 \right ){\frac{1}{\sqrt{-{a}^{2}{x}^{2}+1}}}} \right ) }-{\frac{i}{{a}^{3}}{\it dilog} \left ( 1-{i \left ( ax+1 \right ){\frac{1}{\sqrt{-{a}^{2}{x}^{2}+1}}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*arctanh(a*x)/(-a^2*x^2+1)^(3/2),x)

[Out]

-1/2*(arctanh(a*x)-1)*(-(a*x-1)*(a*x+1))^(1/2)/a^3/(a*x-1)-1/2*(arctanh(a*x)+1)*(-(a*x-1)*(a*x+1))^(1/2)/a^3/(
a*x+1)+I*ln(1+I*(a*x+1)/(-a^2*x^2+1)^(1/2))*arctanh(a*x)/a^3-I*ln(1-I*(a*x+1)/(-a^2*x^2+1)^(1/2))*arctanh(a*x)
/a^3+I*dilog(1+I*(a*x+1)/(-a^2*x^2+1)^(1/2))/a^3-I*dilog(1-I*(a*x+1)/(-a^2*x^2+1)^(1/2))/a^3

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2} \operatorname{artanh}\left (a x\right )}{{\left (-a^{2} x^{2} + 1\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*arctanh(a*x)/(-a^2*x^2+1)^(3/2),x, algorithm="maxima")

[Out]

integrate(x^2*arctanh(a*x)/(-a^2*x^2 + 1)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{-a^{2} x^{2} + 1} x^{2} \operatorname{artanh}\left (a x\right )}{a^{4} x^{4} - 2 \, a^{2} x^{2} + 1}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*arctanh(a*x)/(-a^2*x^2+1)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(-a^2*x^2 + 1)*x^2*arctanh(a*x)/(a^4*x^4 - 2*a^2*x^2 + 1), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2} \operatorname{atanh}{\left (a x \right )}}{\left (- \left (a x - 1\right ) \left (a x + 1\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*atanh(a*x)/(-a**2*x**2+1)**(3/2),x)

[Out]

Integral(x**2*atanh(a*x)/(-(a*x - 1)*(a*x + 1))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2} \operatorname{artanh}\left (a x\right )}{{\left (-a^{2} x^{2} + 1\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*arctanh(a*x)/(-a^2*x^2+1)^(3/2),x, algorithm="giac")

[Out]

integrate(x^2*arctanh(a*x)/(-a^2*x^2 + 1)^(3/2), x)